论文标题

桥梁模态识别使用移动车辆内的加速度测量

Bridge Modal Identification using Acceleration Measurements within Moving Vehicles

论文作者

Eshkevari, Soheil Sadeghi, Matarazzo, Thomas J., Pakzad, Shamim N.

论文摘要

车辆穿过桥结构的车辆对桥梁的振动有动态响应。在移动车辆中收集的加速信号包含桥梁的结构响应的痕迹,但还包括其他来源,例如车辆悬架系统和表面粗糙度引起的振动。本文使用移动车辆网络收集的数据介绍了两种用于桥系统识别的方法。通过将车辆响应在频域中解次vlose vloss驱动系统的贡献。第一种方法利用了车辆传输功能,第二种方法使用了EEMD方法。接下来,使用二阶盲识别(SOBI)方法提取粗糙度引起的振动。在这两个过程之后,所得信号等效于扫描桥梁动态响应的移动传感器的读数。使用移动传感器数据的结构模态识别最近作为Stridex算法引入。使用Stridex分析了处理后的移动传感器数据,以识别桥梁的模态性能。该方法的性能在通过移动车辆网络监控的长单跨桥的数值案例研究中得到了验证。分析考虑了三种道路表面粗糙度模式。结果表明,所提出的算法成功地提取纯桥振动,并产生桥梁的准确而全面的模态性能。研究表明,提出的传递函数方法可以有效地解开移动车辆的线性动力学。 EEMD方法能够提取车辆动态响应,而无需有关车辆的APRIORI信息。这项研究是使用\ textIt {移动车辆传感器数据}的第一个完整桥模态识别的方法,包括操作固有频率,模式形状和阻尼比。

Vehicles crossing bridge structures respond dynamically to the bridge's vibrations. An acceleration signal collected within a moving vehicle contains a trace of the bridge's structural response, but also includes other sources such as the vehicle suspension system and surface roughness-induced vibrations. This paper introduces two methods for the bridge system identification using data collected by a network of moving vehicles. The contributions of the vehicle suspension system are removed by deconvolving the vehicle response in frequency domain. The first approach utilizes the vehicle transfer function, and the second uses EEMD method. Next, roughness-induced vibrations are extracted using second-order blind identification (SOBI) method. After these two processes the resulting signal is equivalent to the readings of mobile sensors that scan the bridge's dynamic response. Structural modal identification using mobile sensor data has been recently introduced as STRIDEX algorithm. The processed mobile sensor data is analyzed using STRIDEX to identify the modal properties of the bridge. The performance of the methods is validated on numerical case studies of a long single-span bridge monitored via a network of moving vehicles. The analyses consider three road surface roughness patterns. Results show that the proposed algorithms are successful in extracting pure bridge vibrations, and produce accurate and comprehensive modal properties of the bridge. The study shows that the proposed transfer function method can efficiently deconvolve the linear dynamics of a moving vehicle. EEMD method is able to extract vehicle dynamic response without a-priori information about the vehicle. This study is the first proposed methodology for complete bridge modal identification, including operational natural frequencies, mode shapes and damping ratios using \textit{moving vehicles sensor data}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源