论文标题
MCMLSD:概率算法和线段检测的评估框架
MCMLSD: A Probabilistic Algorithm and Evaluation Framework for Line Segment Detection
论文作者
论文摘要
传统的线段检测方法通常涉及霍夫域中图像域和/或全局积累中的感知分组。在这里,我们提出了一种概率算法,该算法融合了两种方法的优势。在第一阶段,使用全球概率的霍夫方法检测到。在第二阶段,在图像域中分析了每个检测到的线,以定位在Hough地图中生成峰的线段。通过将搜索限制在线路上,可以将片段在线上的点序列上的分布建模为马尔可夫链,并且可以在线性时间内使用标准的动态编程算法来精确地计算出概率上最佳的标记。马尔可夫假设还导致了一种直观的排名方法,该方法使用局部边缘后验概率来估计一个段上正确标记点的预期数量。为了评估所得的马尔可夫链边缘线段检测器(MCMLSD),我们开发并应用了一种用于控制不足和分割的新型定量评估方法。对约克班班和线框数据集的评估表明,所提出的MCMLSD方法的表现优于先前的传统方法,以及最新的深度学习方法。
Traditional approaches to line segment detection typically involve perceptual grouping in the image domain and/or global accumulation in the Hough domain. Here we propose a probabilistic algorithm that merges the advantages of both approaches. In a first stage lines are detected using a global probabilistic Hough approach. In the second stage each detected line is analyzed in the image domain to localize the line segments that generated the peak in the Hough map. By limiting search to a line, the distribution of segments over the sequence of points on the line can be modeled as a Markov chain, and a probabilistically optimal labelling can be computed exactly using a standard dynamic programming algorithm, in linear time. The Markov assumption also leads to an intuitive ranking method that uses the local marginal posterior probabilities to estimate the expected number of correctly labelled points on a segment. To assess the resulting Markov Chain Marginal Line Segment Detector (MCMLSD) we develop and apply a novel quantitative evaluation methodology that controls for under- and over-segmentation. Evaluation on the YorkUrbanDB and Wireframe datasets shows that the proposed MCMLSD method outperforms prior traditional approaches, as well as more recent deep learning methods.