论文标题
在边界标记表面的雅各布代数的边界代数上
On the boundary algebras of the Jacobian algebras of the bordered marked surfaces
论文作者
论文摘要
给定$σ$一个带有标记点和穿刺$(s,m)$的边界表面的三角剖分,我们将冰颤动与潜在$(q_σ,w_σ,f)$相关联,并定义相应的jacobian代数$γ_σ$。我们表明,边界代数$ b(σ)$的$γ_σ$仅取决于表面$(s,m)$。
Given $σ$ a triangulation of bordered surface with marked points and punctures $(S, M)$, we associate an ice quiver with potential $(Q_σ, W_σ, F)$ and define the corresponding Jacobian algebra $Γ_σ$. We show that the boundary algebra $B(σ)$ of $Γ_σ$ depends only on the surface $(S, M)$.