论文标题

格林的弗拉基米罗夫衍生品和泰特论文的功能

Green's Functions for Vladimirov Derivatives and Tate's Thesis

论文作者

Huang, An, Stoica, Bogdan, Yau, Shing-Tung, Zhong, Xiao

论文摘要

给定一个带有hecke字符$χ$的数字字段$ k $,对于每个位置$ν$,我们研究了自由标量场理论,其动力学术语由正规化的vladimirov衍生物给出,与$χ$的本地组件相关。这些理论出现在$ p $ - adiC string理论和$ p $ - adic Ads/CFT通信的研究中。我们证明了根据$χ$的本地组件的傅立叶结合物的正则化vladimirov衍生物的公式。我们发现绿色的函数由Zeta积分的局部功能方程式给出。此外,考虑到所有位置$ν$,与绿色功能相对应的字段理论两点函数满足了Adelic产品公式,该公式与Zeta积分的全局功能方程相当。特别是,这指出了泰特论文在Adelic Physics中的作用。

Given a number field $K$ with a Hecke character $χ$, for each place $ν$ we study the free scalar field theory whose kinetic term is given by the regularized Vladimirov derivative associated to the local component of $χ$. These theories appear in the study of $p$-adic string theory and $p$-adic AdS/CFT correspondence. We prove a formula for the regularized Vladimirov derivative in terms of the Fourier conjugate of the local component of $χ$. We find that the Green's function is given by the local functional equation for Zeta integrals. Furthermore, considering all places $ν$, the field theory two-point functions corresponding to the Green's functions satisfy an adelic product formula, which is equivalent to the global functional equation for Zeta integrals. In particular, this points out a role of Tate's thesis in adelic physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源