论文标题

有监督的关于前馈神经网络的HEBBIAN学习方法

A Supervised Modified Hebbian Learning Method On Feed-forward Neural Networks

论文作者

Qumsieh, Rafi

论文摘要

在本文中,我们提出了一种基于Hebbian学习算法的新的监督学习算法,以尝试替代背部传播以及梯度下降,以替代生物学上更合理的方法。该算法的最佳性能是在使用MNIST手写数字数据集的馈送神经网络上运行的,在测试数据集上的精度为70.4%,验证数据集的精度为71.48%。

In this paper, we present a new supervised learning algorithm that is based on the Hebbian learning algorithm in an attempt to offer a substitute for back propagation along with the gradient descent for a more biologically plausible method. The best performance for the algorithm was achieved when it was run on a feed-forward neural network with the MNIST handwritten digits data set reaching an accuracy of 70.4% on the test data set and 71.48% on the validation data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源