论文标题
探测合成厅系统的手性边缘动力学和散装拓扑
Probing chiral edge dynamics and bulk topology of a synthetic Hall system
论文作者
论文摘要
量子大厅系统的特征是量化霍尔电导 - 一种植根于基础量子状态的拓扑结构的大量特性。在冷凝的物质设备中,材料缺陷阻碍了与简单拓扑模型的直接连接。人工系统,例如光子平台或冷原子气体,通过启用拓扑或柔性操纵的特定探针来开放新型可能性。使用合成维度。但是,拓扑特性的相关性需要大量的概念,这在以前的工作中使用有限尺寸的合成维度所缺少。在这里,我们在一个二维几何形状中,通过一个空间尺寸和一个在原子旋转中编码的合成维度形成的二维几何形状实现了一个量子厅系统。我们证明,大量磁性螺纹导致不同的散装和边缘行为。此外,我们测量了大厅的漂移,并重建了当地的Chern标记,这一可观察到,到目前为止,在实验上仍然无法访问。在合成维度的中心(在17个国家中有11个状态中有11个状态)达到了拓扑系统预期的量化值的98(5)\%。我们的发现为实现拓扑多体阶段的实现铺平了道路。
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states. In condensed matter devices, material imperfections hinder a direct connection to simple topological models. Artificial systems, such as photonic platforms or cold atomic gases, open novel possibilities by enabling specific probes of topology or flexible manipulation e.g. using synthetic dimensions. However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin $J=8$. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible. In the center of the synthetic dimension -- a bulk of 11 states out of 17 -- the Chern marker reaches 98(5)\% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases.