论文标题
用于MMWave系统中光束跟踪的机器学习解决方案
A Machine Learning Solution for Beam Tracking in mmWave Systems
论文作者
论文摘要
在\ emph {Mobile}系统中,使用毫米波(MMWAVE)频率很具有挑战性,因为它需要连续跟踪梁方向。最近,提出了基于通道稀疏性和/或基于Kalman滤波器的技术的光束跟踪技术,在此,解决方案使用有关环境和设备迁移率的假设在实际情况下可能无法持有的假设。在本文中,我们探讨了一种基于机器学习的方法,以跟踪现实情况下的特定路径的到达角度(AOA)。特别是,我们使用具有修改的成本函数的复发性神经网络(R-NN)结构来跟踪AOA。我们提出了在顺序数据中训练网络的方法,并研究了我们提出的解决方案的性能,与基于Quadriga框架的随机通道模型的现实MMWAVE场景中的扩展基于Kalman滤波器的解决方案相比。结果表明,我们提出的解决方案通过降低AOA中断概率,从而优于扩展的Kalman滤波器方法,从而减少了频繁梁搜索的需求。
Utilizing millimeter-wave (mmWave) frequencies for wireless communication in \emph{mobile} systems is challenging since it requires continuous tracking of the beam direction. Recently, beam tracking techniques based on channel sparsity and/or Kalman filter-based techniques were proposed where the solutions use assumptions regarding the environment and device mobility that may not hold in practical scenarios. In this paper, we explore a machine learning-based approach to track the angle of arrival (AoA) for specific paths in realistic scenarios. In particular, we use a recurrent neural network (R-NN) structure with a modified cost function to track the AoA. We propose methods to train the network in sequential data, and study the performance of our proposed solution in comparison to an extended Kalman filter based solution in a realistic mmWave scenario based on stochastic channel model from the QuaDRiGa framework. Results show that our proposed solution outperforms an extended Kalman filter-based method by reducing the AoA outage probability, and thus reducing the need for frequent beam search.