论文标题

获得或失去观点

Gaining or losing perspective

论文作者

Lee, Jon, Skipper, Daphne, Speakman, Emily

论文摘要

We study MINLO (mixed-integer nonlinear optimization) formulations of the disjunction $x\in\{0\}\cup[l,u]$, where $z$ is a binary indicatorof $x\in[l,u]$ ($u> \ell > 0$), and $y$ "captures" $f(x)$, which is assumed to be convex on its domain $[l,u]$,但是否则$ y = 0 $当$ x = 0 $。当活动具有运营范围时,我们为执行每项活动支付固定成本,并且活动级别的成本为凸面。 我们使用数量作为比较凸体的量度,研究了该模型的各种连续放松,其中之一是凸起船体,它通过“透视重新印象” $ y \ y \ geq zf(x/z)$实现。我们将其与各种较弱的放松相提并论,研究它们何时可以被视为可行的替代方案。在重要的特殊情况下,当$ f(x):= x^p $,对于$ p> 1 $时,使用不平等的$ yz^q \ geq x^p $的放松,对于[0,p-1] $,对于$ q \ in [0,p-1] $,是较高维的幂cone,是可代表的,因此在理论上是可拖延的。一个众所周知的具体应用($ f(x):= x^2 $)是均值优化(以马克维茨的风格),我们进行了一些实验,以说明我们在该应用程序上的理论。

We study MINLO (mixed-integer nonlinear optimization) formulations of the disjunction $x\in\{0\}\cup[l,u]$, where $z$ is a binary indicatorof $x\in[l,u]$ ($u> \ell > 0$), and $y$ "captures" $f(x)$, which is assumed to be convex on its domain $[l,u]$, but otherwise $y=0$ when $x=0$. This model is useful when activities have operating ranges, we pay a fixed cost for carrying out each activity, and costs on the levels of activities are convex. Using volume as a measure to compare convex bodies, we investigate a variety of continuous relaxations of this model, one of which is the convex-hull, achieved via the "perspective reformulation" inequality $y \geq zf(x/z)$. We compare this to various weaker relaxations, studying when they may be considered as viable alternatives. In the important special case when $f(x) := x^p$, for $p>1$, relaxations utilizing the inequality $yz^q \geq x^p$, for $q \in [0,p-1]$, are higher-dimensional power-cone representable, and hence tractable in theory. One well-known concrete application (with $f(x) := x^2$) is mean-variance optimization (in the style of Markowitz), and we carry out some experiments to illustrate our theory on this application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源