论文标题

医学成像中不确定的逆问题基于深度学习的可溶性

Deep Learning-Based Solvability of Underdetermined Inverse Problems in Medical Imaging

论文作者

Hyun, Chang Min, Baek, Seong Hyeon, Lee, Mingyu, Lee, Sung Min, Seo, Jin Keun

论文摘要

最近,随着深度学习技术的重大发展,解决不确定的逆问题已成为医学成像领域的主要问题之一。典型的示例包括不足采样的磁共振成像,内部断层扫描和稀疏视图计算机断层扫描,其中深度学习技术的表现出色。尽管深度学习方法似乎在处理各种不确定的问题时似乎克服了现有数学方法的局限性,但缺乏严格的数学基础,这将使我们能够阐明深度学习方法表现出色的原因。这项研究重点是学习有关适合深度学习的培训数据结构的因果关系,以解决高度不确定的反问题。我们观察到,在医学成像中解决不确定的线性系统的大多数问题都是高度非线性的。此外,我们分析是否可以从培训数据和不确定的系统中学习所需的重建图。

Recently, with the significant developments in deep learning techniques, solving underdetermined inverse problems has become one of the major concerns in the medical imaging domain. Typical examples include undersampled magnetic resonance imaging, interior tomography, and sparse-view computed tomography, where deep learning techniques have achieved excellent performances. Although deep learning methods appear to overcome the limitations of existing mathematical methods when handling various underdetermined problems, there is a lack of rigorous mathematical foundations that would allow us to elucidate the reasons for the remarkable performance of deep learning methods. This study focuses on learning the causal relationship regarding the structure of the training data suitable for deep learning, to solve highly underdetermined inverse problems. We observe that a majority of the problems of solving underdetermined linear systems in medical imaging are highly non-linear. Furthermore, we analyze if a desired reconstruction map can be learnable from the training data and underdetermined system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源