论文标题

关于T-Adic Littlewood的猜想

On t-adic Littlewood conjecture for generalised Thue-Morse functions

论文作者

Badziahin, Dzmitry

论文摘要

我们考虑一个由无限产品定义的laurent系列$ g_u(t)= \ prod_ {n = 0}^\ infty(1 + ut^{ - 2^n})$,其中$ u \ in \ mathbb {f} $是一个参数和$ \ m athbb {f} $是一个字段。我们表明,对于所有$ u \ in \ mathbb {q} \ setMinus \ { - 1,0,1 \} $系列$ g_u(t)$不满足$ t $ adiC littlewood的猜想。另一方面,如果$ \ mathbb {f} $是有限的,则$ g_u(t)\ in \ mathbb {f}(((t^{ - 1}))$是有理功能,或者它满足$ t $ - ad $ - ad $ - ad $ - ad $ - ad $ adic-adic littlewood猜想。

We consider a Laurent series defined by infinite products $g_u(t) = \prod_{n=0}^\infty (1 + ut^{-2^n})$, where $u\in \mathbb{F}$ is a parameter and $\mathbb{F}$ is a field. We show that for all $u\in\mathbb{Q}\setminus\{-1,0,1\}$ the series $g_u(t)$ does not satisfy the $t$-adic Littlewood conjecture. On the other hand, if $\mathbb{F}$ is finite then $g_u(t)\in \mathbb{F}((t^{-1}))$ is either a rational function or it satisfies the $t$-adic Littlewood conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源