论文标题

三阶半线性高级微分方程的新振荡标准

New oscillation criteria for third-order half-linear advanced differential equations

论文作者

Yao, J., Zhang, X., Yu, J.

论文摘要

本文的主题是提供一些足够条件,以使所有三阶半线性微分方程的渐近属性和振荡具有高级$ $ \ left(r_ {2}(t)(t)\ left(\ left(r_ {1}(r_ {1}(t)(t)(t)\左(y'(y'(y'(y'), +q(t)y^γ\ left(σ(t)\ right)= 0,\ t \ geq t_ {0}> 0,$$其中$ \ int^{\ infty} r_ {1}^{ - \ frac {1} $ \ int^{\ infty} r_ {2}^{ - \ frac {1}β}(s)\ text {d} s <\ infty $。本文中的标准改善并补充了一些现有标准。结果由两个Euler型微分方程说明。

The theme of this article is to provide some sufficient conditions for the asymptotic property and oscillation of all solutions of third-order half-linear differential equations with advanced argument of the form $$\left(r_{2}(t)\left(\left(r_{1}(t)\left(y'(t)\right)^α\right)'\right)^β\right)' +q(t)y^γ\left(σ(t)\right)=0,\ t\geq t_{0}>0,$$ where $\int^{\infty}r_{1}^{-\frac{1}α}(s)\text{d}s<\infty$ and $\int^{\infty}r_{2}^{-\frac{1}β}(s)\text{d}s<\infty$. The criteria in this paper improve and complement some existing ones. The results are illustrated by two Euler-type differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源