论文标题

schr {Ö} dinger lie代数$(n+1)$ dimensional时空时

Irreducible weight modules over the Schr{ö}dinger Lie algebra in $(n+1)$ dimensional space-time

论文作者

Liu, Genqiang, Li, Yang, Wang, Keke

论文摘要

在本文中,我们研究了schr {Ö} dinger lie代数$ \ mathfrak {s} _n $的权重表示。事实证明,多项式差分运算符可以实现代数$ \ mathfrak {s} _n $。使用此实现,我们将对任何$ n $的有限维度重量空间提供了不可约权重$ \ mathfrak {s} _n $模块的完整分类。所有此类模块都可以清楚地表征$ \ Mathfrak {so} _n $ -Modules,$ \ Mathfrak {Sl} _2 $ -Modules和模块上的张量产品。

In this paper, we study weight representations over the Schr{ö}dinger Lie algebra $\mathfrak{s}_n$ for any positive integer $n$. It turns out that the algebra $\mathfrak{s}_n$ can be realized by polynomial differential operators. Using this realization, we give a complete classification of irreducible weight $\mathfrak{s}_n$-modules with finite dimensional weight spaces for any $n$. All such modules can be clearly characterized by the tensor product of $\mathfrak{so}_n$-modules, $\mathfrak{sl}_2$-modules and modules over the Weyl algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源