论文标题
关于n维欧几里得空间中事件的布尔函数的概率
On the probability of Boolean functions of events in the n-dimensional Euclidean space
论文作者
论文摘要
作者在2017年表明,对于N维空间中的N矫形联盟,使用合适的部分订单关系构建,存在一种有效而系统的方法来找到确切的价值。在本文中,我们的事件是高型角(或N-正常异位),这是笛卡尔间隔的乘积:理论和实践中的另一个重要集(或事件)。我们已经发现了一种新的有效算法,以实现此类事件的结合。使用其他重要的布尔功能,我们提出了针对超旋转和矫形器的优化问题制定。
It is shown by the author in 2017 that for the union of N orthants in the n-dimensional space there exists an efficient and systematic way to find the exact value, using a suitable partial order relation construction. In this paper our events are hyperrectangles (or n-orthotopes), the Cartesian product of intervals: another important sets (or events) in both theory and practice. We have discovered a new efficient algorithm for the union of such events. With other important Boolean functions we present optimization problem formulations for both hyperreectangles and orthants.