论文标题

关于强弹道运输与指数动态定位之间的关系

On the relation between strong ballistic transport and exponential dynamical localization

论文作者

Kachkovskiy, Ilya

论文摘要

由于双重家族的指数动力学定位,我们为一个离散的准卫生型施罗丁犬家族建立了强大的弹道运输。从本质上讲,后者是由Jitomirskaya和Krüger在单频的环境中表现出来的,在多频案例中,您是ge-you-zhou。在这两个制度中,我们都会获得$ \ frac {1} {t} x(t)$的强烈收敛到渐近速度操作员$ q $,这改善了Zhao的最新扰动结果,并提供了最强的已知形式的弹道运动形式。在单频的环境中,这种方法允许非扰动地对待二只频率,并且也考虑了弱的liouville情况。

We establish strong ballistic transport for a family of discrete quasiperiodic Schrödinger operators as a consequence of exponential dynamical localization for the dual family. The latter has been, essentially, shown by Jitomirskaya and Krüger in the one-frequency setting and by Ge--You--Zhou in the multi-frequency case. In both regimes, we obtain strong convergence of $\frac{1}{T}X(T)$ to the asymptotic velocity operator $Q$, which improves recent perturbative results by Zhao and provides the strongest known form of ballistic motion. In the one-frequency setting, this approach allows to treat Diophantine frequencies non-perturbatively and also consider the weakly Liouville case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源