论文标题
一般部分标签通过双重双分图自动编码器
General Partial Label Learning via Dual Bipartite Graph Autoencoder
论文作者
论文摘要
我们提出一个实用但充满挑战的问题:一般部分标签学习(GPLL)。与传统的部分标签学习(PLL)问题相比,GPLL放宽了实例级别的监督假设 - 标签集将一个标签标记为实例 - 到组级别:1)标签集部分标签一组实例,其中集团内标签链接注释缺失了组内的跨组链接,以及组中的一个链接 - 从组中 - 可以部分地链接。在现实世界中,这种模棱两可的群体级别的监督更为实用,因为不再需要实例级别的其他注释,例如,在视频中进行脸部命名,其中小组在框架中由面孔组成,标有相应字幕中的名称集。在本文中,我们提出了一个新的图形卷积网络(GCN),称为双两部分图自动编码器(DB-GAE),以应对GPLL的标签歧义挑战。首先,我们利用跨组相关性将实例组表示为双重二分图:组内和跨组,它们相互补充以解决链接的歧义。其次,我们设计了一个GCN自动编码器来对其进行编码和解码,其中解码被视为精制结果。值得注意的是,DB-GAE是自我监督和转导的,因为它仅使用没有单独的离线训练阶段的小组级监督。在两个现实世界数据集上进行的广泛实验表明,DB-A-GAE的表现明显优于绝对0.159 F1得分的最佳基线和24.8%的精度。我们进一步提供了各种标签歧义的分析。
We formulate a practical yet challenging problem: General Partial Label Learning (GPLL). Compared to the traditional Partial Label Learning (PLL) problem, GPLL relaxes the supervision assumption from instance-level -- a label set partially labels an instance -- to group-level: 1) a label set partially labels a group of instances, where the within-group instance-label link annotations are missing, and 2) cross-group links are allowed -- instances in a group may be partially linked to the label set from another group. Such ambiguous group-level supervision is more practical in real-world scenarios as additional annotation on the instance-level is no longer required, e.g., face-naming in videos where the group consists of faces in a frame, labeled by a name set in the corresponding caption. In this paper, we propose a novel graph convolutional network (GCN) called Dual Bipartite Graph Autoencoder (DB-GAE) to tackle the label ambiguity challenge of GPLL. First, we exploit the cross-group correlations to represent the instance groups as dual bipartite graphs: within-group and cross-group, which reciprocally complements each other to resolve the linking ambiguities. Second, we design a GCN autoencoder to encode and decode them, where the decodings are considered as the refined results. It is worth noting that DB-GAE is self-supervised and transductive, as it only uses the group-level supervision without a separate offline training stage. Extensive experiments on two real-world datasets demonstrate that DB-GAE significantly outperforms the best baseline over absolute 0.159 F1-score and 24.8% accuracy. We further offer analysis on various levels of label ambiguities.