论文标题
一些差分单元的价值分布
Value distribution of some differential monomials
论文作者
论文摘要
令$ f $为复杂平面$ \ mathbb {c} $中定义的先验杂种功能。我们考虑差分多项式$ f^{q_ {0}}(f^{(k)})^{q_ {k}} $的值分布,其中$ q_ {0}(\ geq 2),q_ {k {k {k}(k geq 1)$ k(\ geq 1)$ k(\ geq1)$ non-ny-nnegers $ non-nnegersegers。我们以$ \ overline {n} \ left(r,\ frac {1} {f^{q _ {_ {0}}}}}}}}}}}}}}}}}(f^{(k)}}^wermiess ysustry Instrught(r,r,{1}}})(f^{q _ {0}})(f^{(k)} {q_________ {等。 (数学不平等应用,14,93-100,2011)和Karmakar and Sahoo(结果数学,73,2018),用于特定类别的先验性异晶功能。
Let $f$ be a transcendental meromorphic function defined in the complex plane $\mathbb{C}$. We consider the value distribution of the differential polynomial $f^{q_{0}}(f^{(k)})^{q_{k}}$, where $q_{0}(\geq 2), q_{k}(\geq 1)$ are $k(\geq1)$ non-negative integers. We obtain a quantitative estimation of the characteristic function $T(r, f)$ in terms of $\overline{N}\left(r,\frac{1}{f^{q_{_{0}}}(f^{(k)})^{q_{k}}-1}\right)$.\par Our result generalizes the results obtained by Xu et al. (Math. Inequal. Appl., 14, 93-100, 2011) and Karmakar and Sahoo (Results Math., 73, 2018) for a particular class of transcendental meromorphic functions.