论文标题
差分变形攻击检测的深面表示
Deep Face Representations for Differential Morphing Attack Detection
论文作者
论文摘要
面部识别系统面临变形攻击的脆弱性是众所周知的。科学文献中提出了许多不同的变形攻击检测方法。但是,到目前为止提出的变形攻击检测算法仅在图像特征的分布非常有限的数据集上进行了训练和测试(例如,仅使用单个变形工具创建),或者相当不现实(例如,没有打印扫描转换)。结果,这些方法很容易在某些图像类型上过度拟合,并且不能期望提出的结果适用于实际情况。例如,最新的NIST面部识别供应商测试的结果表明,在考虑看不见和挑战性数据集时,提交的MAD算法缺乏稳健性和性能。在这项工作中,使用FERET和FRGCV2面部数据库的子集用于创建一个大型逼真的数据库,用于训练和测试变形攻击检测算法,其中包含大量ICAO兼容的善意的面部图像,相应的不约束的探测图像,以及使用四种不同工具创建的变形图像。此外,在参考图像上应用多个后处理,例如打印扫描和JPEG2000压缩。在此数据库中,先前提出的差异变形算法进行了评估和比较。此外,研究了深面表示在差异变形攻击检测算法中的应用。结果表明,基于深面表示的算法可以达到非常高的检测性能(小于3 \%〜\ mbox {d-erer})和相对于各种后处理的鲁棒性。最后,分析了开发方法的局限性。
The vulnerability of facial recognition systems to face morphing attacks is well known. Many different approaches for morphing attack detection have been proposed in the scientific literature. However, the morphing attack detection algorithms proposed so far have only been trained and tested on datasets whose distributions of image characteristics are either very limited (e.g. only created with a single morphing tool) or rather unrealistic (e.g. no print-scan transformation). As a consequence, these methods easily overfit on certain image types and the results presented cannot be expected to apply to real-world scenarios. For example, the results of the latest NIST Face Recognition Vendor Test MORPH show that the submitted MAD algorithms lack robustness and performance when considering unseen and challenging datasets. In this work, subsets of the FERET and FRGCv2 face databases are used to create a large realistic database for training and testing of morphing attack detection algorithms, containing a large number of ICAO-compliant bona fide facial images, corresponding unconstrained probe images, and morphed images created with four different tools. Furthermore, multiple post-processings are applied on the reference images, e.g. print-scan and JPEG2000 compression. On this database, previously proposed differential morphing algorithms are evaluated and compared. In addition, the application of deep face representations for differential morphing attack detection algorithms is investigated. It is shown that algorithms based on deep face representations can achieve very high detection performance (less than 3\%~\mbox{D-EER}) and robustness with respect to various post-processings. Finally, the limitations of the developed methods are analyzed.