论文标题

在完整图中选择$ k $ gedies-dischint hamilton Cycles的概率

The probability of selecting $k$ edge-disjoint Hamilton cycles in the complete graph

论文作者

Ferber, Asaf, Haenni, Kaarel, Jain, Vishesh

论文摘要

令$ h_1,\ dots,h_k $是hamilton Cycles in $ k_n $,随机独立和均匀地选择。我们以$ k = o(n^{1/100})$表明,$ h_1,\ dots,h_k $ exge-disjoint的概率为$(1+o(1))这扩展了罗宾斯在$ k = 2 $的情况下获得的相应估计。

Let $H_1,\dots,H_k$ be Hamilton cycles in $K_n$, chosen independently and uniformly at random. We show, for $k = o(n^{1/100})$, that the probability of $H_1,\dots,H_k$ being edge-disjoint is $(1+o(1))e^{-2\binom{k}{2}}$. This extends a corresponding estimate obtained by Robbins in the case $k=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源