论文标题
在完整图中选择$ k $ gedies-dischint hamilton Cycles的概率
The probability of selecting $k$ edge-disjoint Hamilton cycles in the complete graph
论文作者
论文摘要
令$ h_1,\ dots,h_k $是hamilton Cycles in $ k_n $,随机独立和均匀地选择。我们以$ k = o(n^{1/100})$表明,$ h_1,\ dots,h_k $ exge-disjoint的概率为$(1+o(1))这扩展了罗宾斯在$ k = 2 $的情况下获得的相应估计。
Let $H_1,\dots,H_k$ be Hamilton cycles in $K_n$, chosen independently and uniformly at random. We show, for $k = o(n^{1/100})$, that the probability of $H_1,\dots,H_k$ being edge-disjoint is $(1+o(1))e^{-2\binom{k}{2}}$. This extends a corresponding estimate obtained by Robbins in the case $k=2$.