论文标题
一些关于Syzygies的亚加性条件的结果
Some results on the subadditivity condition of syzygies
论文作者
论文摘要
除其他结果外,我们证明,如果$ i $是$ s = k [x_1,\ ldots,x_n] $的单一理想,其中$ k $是一个字段,而$ a \ geq b-1 \ geq0 $是整数,则是$ a+a+a+a+b \ b \ leq \ leq \ mathrm {proj〜im dim}(proj〜dim} $} T_A+T_1+T_2+\ CDOTS+T_B- \ frac {b(b-1)} {2},$$其中$ t_1,t_2,\ dots $是最小级别的免费$ s $ $ s $ $ s/i $ $ s/i $的最大变化。
Among other results, we prove that if $I$ is a monomial ideal of $S=K[x_1,\ldots,x_n]$, where $K$ is a field, and $a\geq b-1\geq0$ are integers such that $a+b\leq\mathrm{proj~dim}(S/I)$, then $$t_{a+b}\leq t_a+t_1+t_2+\cdots+t_b-\frac{b(b-1)}{2},$$ where $t_1,t_2,\dots$ are the maximal shifts in the minimal graded free $S$-resolution of $S/I$.