论文标题
单一表示减少表示的代数的表示
Unicity for representations of reduced stated skein algebras
论文作者
论文摘要
我们证明,在统一根基上陈述的链球代数及其减少版本的版本几乎是azumaya,并且在其中心上估算了一个降低的Skein代数的等级,从而扩展了Frohman,Kania-Bartoszynska和lê的定理,以开放张开的张开的张开的表面。我们推断出还原已陈述的代数的一般不可约说明是量子teichmüller型的,相反,通用的量子Teichmüller类型表示不可记录。
We prove that both stated skein algebras and their reduced versions at odd roots of unity are almost-Azumaya and compute the rank of a reduced stated skein algebra over its center, extending a theorem of Frohman, Kania-Bartoszynska and Lê to the case of open punctured surfaces. We deduce that generic irreducible representations of the reduced stated skein algebras are of quantum Teichmüller type and, conversely, that generic quantum Teichmüller type representations are irreducible.