论文标题

在空间弯曲的FRW空间中的压缩流体类别的动力学

Dynamics of classes of barotropic fluids in spatially curved FRW spacetimes

论文作者

Kerachian, Morteza, Acquaviva, Giovanni, Lukes-Gerakopoulos, Georgios

论文摘要

在本文中,我们对空间弯曲的Friedmann-Robertson-Walker(FRW)时空背景中的一系列重型液体进行动态分析,而无需考虑宇宙常数。我们研究的第一部分涉及具有未指定的状态(EOS)的流体动力学,其唯一假设是流体能量密度的非负性。在定义了一组新的无量纲变量和一个新的Evolution参数之后,我们介绍了编码EOS的函数$γ$。在此一般设置中,确定了系统的几个功能:关键点,不变子集和函数$γ$的特征以及它们的宇宙学解释。我们工作的第二部分提供了两个具有特定$γ$功能的示例。在第一个示例中,我们提供了$γ$函数,然后通过物理参数展示如何将其修剪成特定类别的EOS,而在第二个示例中,我们讨论了在Phys.Rev中研究的二次EOS。 D {\ bf 74},023523(2006)通过将我们的方法与他们的分析进行比较。

In this article we perform dynamical analysis of a broad class of barotropic fluids in the spatially curved Friedmann-Robertson-Walker (FRW) spacetime background without considering the cosmological constant. The first part of our study concerns the dynamics of a fluid with an unspecified barotropic equation of state (EoS) having as the only assumption the non-negativity of the fluid's energy density. After defining a new set of dimensionless variables and a new evolution parameter, we introduce the function $Γ$ that encodes the EoS. In this general setup several features of the system are identified: critical points, invariant subsets and the characteristics of the function $Γ$, along with their cosmological interpretations. The second part of our work provides two examples with specific $Γ$ functions. In the first example we provide a $Γ$ function and then we exhibit how it can be trimmed down to a specific class of EoS through physical arguments, while in the second example we discuss the quadratic EoS studied in Phys.Rev. D {\bf 74}, 023523 (2006) by comparing our approach with their analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源