论文标题

由单个结构化原子层形成的次级光学镜

A subradiant optical mirror formed by a single structured atomic layer

论文作者

Rui, Jun, Wei, David, Rubio-Abadal, Antonio, Hollerith, Simon, Zeiher, Johannes, Stamper-Kurn, Dan M., Gross, Christian, Bloch, Immanuel

论文摘要

光与物质相互作用的有效且通用的界面是量子科学的必不可少的基石。最近,基于在量子发射器的结构化亚波长阵列中,基于光子介导的偶极 - 偶极相互作用的丰富相互作用,已提出了一种从根本上控制光 - 物质相互作用的新途径。在这里,我们报告了光学晶格中二维(2D)正方形原子阵列的合作次级反应的直接观察。我们观察到集体原子响应的光谱狭窄,远低于单个原子量子衰减到自由空间的量子。通过空间分辨的光谱测量值,我们表明该阵列仅是仅由几百个原子的单个单层形成的有效镜子。通过调整阵列中的原子密度并通过更改粒子的排序,我们能够控制阵列的合作响应,并阐明合奏集体特性的空间顺序和偶极相互作用的相互作用。阵列中原子的Bloch振荡使我们能够动态控制原子镜的反射率。我们的工作证明了基于原子的结构化合物并在单个量子水平上具有光线和新型的光晶体界面的有效的光学超材料工程。

Efficient and versatile interfaces for the interaction of light with matter are an essential cornerstone for quantum science. A fundamentally new avenue of controlling light-matter interactions has been recently proposed based on the rich interplay of photon-mediated dipole-dipole interactions in structured subwavelength arrays of quantum emitters. Here we report on the direct observation of the cooperative subradiant response of a two-dimensional (2d) square array of atoms in an optical lattice. We observe a spectral narrowing of the collective atomic response well below the quantum-limited decay of individual atoms into free space. Through spatially resolved spectroscopic measurements, we show that the array acts as an efficient mirror formed by only a single monolayer of a few hundred atoms. By tuning the atom density in the array and by changing the ordering of the particles, we are able to control the cooperative response of the array and elucidate the interplay of spatial order and dipolar interactions for the collective properties of the ensemble. Bloch oscillations of the atoms out of the array enable us to dynamically control the reflectivity of the atomic mirror. Our work demonstrates efficient optical metamaterial engineering based on structured ensembles of atoms and paves the way towards the controlled many-body physics with light and novel light-matter interfaces at the single quantum level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源