论文标题

让我们共享:用于在移动边缘云中资源共享的游戏理论框架

Let's Share: A Game-Theoretic Framework for Resource Sharing in Mobile Edge Clouds

论文作者

Zafari, Faheem, Leung, Kin K., Towsley, Don, Basu, Prithwish, Swami, Ananthram, Li, Jian

论文摘要

移动边缘计算旨在为不同的延迟敏感应用程序提供资源。这是一个具有挑战性的问题,因为边缘云服务提供商可能没有足够的资源来满足所有资源请求。此外,将可用资源最佳地分配给不同的应用程序也很具有挑战性。不同边缘云服务提供商之间的资源共享可以解决上述限制,因为某些服务提供商可能拥有其他服务提供商可以``租用''的资源。但是,边缘云服务提供商可以具有不同的目标或\ emph {实用程序}。因此,需要一种有效有效的机制来在服务提供商之间共享资源,同时考虑各种提供商的不同目标。我们将资源共享作为多目标优化问题建模,并基于\ emph {合作游戏理论}(CGT)提出解决方案框架。我们考虑每个服务提供商首先将资源分配给其本机应用程序的策略,并与其他服务提供商的应用程序共享其余资源。我们证明,对于单调的,非降低的实用程序功能,游戏是规范和凸的。因此,\ emph {core}不是空的,大联盟是稳定的。我们提出了两种算法\ emph {Game Theoretic Pareto最佳分配}(GPOA)和\ emph {polyandrous-polygamous匹配的基于帕托的最佳分配}(PPMPOA),可提供来自核心的分配。因此,获得的分配是\ emph {pareto}最佳的,所有服务提供商的大联盟都是稳定的。实验结果证实,我们提出的资源共享框架改善了边缘云服务提供商的实用性和应用程序请求满意度。

Mobile edge computing seeks to provide resources to different delay-sensitive applications. This is a challenging problem as an edge cloud-service provider may not have sufficient resources to satisfy all resource requests. Furthermore, allocating available resources optimally to different applications is also challenging. Resource sharing among different edge cloud-service providers can address the aforementioned limitation as certain service providers may have resources available that can be ``rented'' by other service providers. However, edge cloud service providers can have different objectives or \emph{utilities}. Therefore, there is a need for an efficient and effective mechanism to share resources among service providers, while considering the different objectives of various providers. We model resource sharing as a multi-objective optimization problem and present a solution framework based on \emph{Cooperative Game Theory} (CGT). We consider the strategy where each service provider allocates resources to its native applications first and shares the remaining resources with applications from other service providers. We prove that for a monotonic, non-decreasing utility function, the game is canonical and convex. Hence, the \emph{core} is not empty and the grand coalition is stable. We propose two algorithms \emph{Game-theoretic Pareto optimal allocation} (GPOA) and \emph{Polyandrous-Polygamous Matching based Pareto Optimal Allocation} (PPMPOA) that provide allocations from the core. Hence the obtained allocations are \emph{Pareto} optimal and the grand coalition of all the service providers is stable. Experimental results confirm that our proposed resource sharing framework improves utilities of edge cloud-service providers and application request satisfaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源