论文标题

一维光学晶格中超速原子费米气体中的超流体和配对现象,第一部分:平衡案例

Superfluidity and pairing phenomena in ultracold atomic Fermi gases in one-dimensional optical lattices, Part I: Balanced case

论文作者

Wang, Jibiao, Zhang, Leifeng, Yu, Yi, Lee, Chaohong, Chen, Qijin

论文摘要

近年来,超速原子费米气体中的超流体和配对现象引起了极大的兴趣,具有多个可调参数。在这里,我们研究了一维光学晶格中平衡两组分的费米气体的BCS-BEC交叉行为,这与简单的三维(3D)连续体和经常在凝结物质系统中经常发现的完全3D晶格不同。我们使用配对波动理论,其中包括有限温度下的自洽反馈效应,并在BCS制度之外找到广泛的伪模现象。由于晶格的周期性,超级流体过渡温度$ t_c $随着BEC政权的配对强度而降低,在那里它渐近地接近$ t_c =πan/2M $,$ a $ a $ a $ a $ s $ s $ - 波散射长度,$ n $ n $($ m $)($ m $)($ m $)。此外,准两个维度可导致快速增长(绝对值)费米斯化学势$μ$和配对差距$δ$,这取决于比率$ d/a $。重要的是,随着晶格常数$ d $的增加,$ t_c $增加了$ t $。确定了Van Hove奇点对$ T_C $的效果。超流体密度在$ t $的$ t $中表现出$ t^{3/2} $,距离极端BCS极限。这些预测可以在以后的实验中进行测试。

The superfluidity and pairing phenomena in ultracold atomic Fermi gases have been of great interest in recent years, with multiple tunable parameters. Here we study the BCS-BEC crossover behavior of balanced two-component Fermi gases in a one-dimensional optical lattice, which is distinct from the simple three-dimensional (3D) continuum and a fully 3D lattice often found in a condensed matter system. We use a pairing fluctuation theory which includes self-consistent feedback effects at finite temperatures, and find widespread pseudogap phenomena beyond the BCS regime. As a consequence of the lattice periodicity, the superfluid transition temperature $T_c$ decreases with pairing strength in the BEC regime, where it approaches asymptotically $T_c = πan/2m$, with $a$ being the $s$-wave scattering length, and $n$ ($m$) the fermion density (mass). In addition, the quasi-two dimensionality leads to fast growing (absolute value of the) fermionic chemical potential $μ$ and pairing gap $Δ$, which depends exponentially on the ratio $d/a$. Importantly, $T_c$ at unitarity increases with the lattice constant $d$ and hopping integral $t$. The effect of the van Hove singularity on $T_c$ is identified. The superfluid density exhibits $T^{3/2}$ power laws at low $T$, away from the extreme BCS limit. These predictions can be tested in future experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源