论文标题

稀疏驱动的移动目标检测在分布式多态FMCW雷达中

Sparsity-Driven Moving Target Detection in Distributed Multistatic FMCW Radars

论文作者

de Galland, Gilles Monnoyer, Feuillen, Thomas, Jacques, Laurent, Vandendorpe, Luc

论文摘要

我们研究了从广泛分布的多键\ textit {频率调制连续波}(FMCW)雷达系统(使用CHIRP调制)中研究稀疏目标检测的问题。与以前的策略(\ emph {e.g。},为FMCW或分布式多态雷达开发),我们提出了一个通用框架,该框架在高分辨率空间 - 速度网格的计算复杂性方面很好地扩展。我们的方法假设\ emph {(i)}目标信号在离散的空间 - 速度域中稀疏,因此允许非静态目标检测,\ emph {(ii)}所得的多个基带信号共享共同的支持。通过简化FMCW雷达信号的表示,我们提出了一种多功能方案平衡复杂性和检测精度。特别是,我们为利用这种简化模型的匹配追踪算法设计了一种低复杂性,分解的替代方案,以及一种迭代方法,以补偿由模型简化引起的错误。 K频段雷达系统的大量蒙特卡洛模拟表明,与以前的稀疏驱动方法相比,我们的方法具有可控的精度,具有可控的精度以及达到最先进的性能。

We investigate the problem of sparse target detection from widely distributed multistatic \textit{Frequency Modulated Continuous Wave} (FMCW) radar systems (using chirp modulation). Unlike previous strategies (\emph{e.g.}, developed for FMCW or distributed multistatic radars), we propose a generic framework that scales well in terms of computational complexity for high-resolution space-velocity grid. Our approach assumes that \emph{(i)} the target signal is sparse in a discrete space-velocity domain, hence allowing for non-static target detection, and \emph{(ii)} the resulting multiple baseband radar signals share a common support. By simplifying the representation of the FMCW radar signals, we propose a versatile scheme balancing complexity and detection accuracy. In particular, we design a low-complexity, factorized alternative for the Matching Pursuit algorithm leveraging this simplified model, as well as an iterative methodology to compensate for the errors caused by the model simplifications. Extensive Monte-Carlo simulations of a K-band radar system show that our method achieves a fast estimation of moving target's parameters on dense grids, with controllable accuracy, and reaching state-of-the-art performances compared to previous sparsity-driven approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源