论文标题

Steiner系统的组合游戏分布

Combinatorial Game Distributions of Steiner Systems

论文作者

Irie, Yuki

论文摘要

$ \ mathscr {p} $ - 某些组合游戏的位置集具有特殊的组合结构。例如,Conway和Ryba首先调查了Hexad游戏的$ \ Mathscr {p} $ - 是Steiner System $ s(5、6、12)$在洗牌编号中的块集,$ \ MATHCAL {D} _ {d} _ {\ text {sh sh}} $。但是,很少有与Hexad游戏这样的与Steiner系统相关的已知游戏。对于给定的施泰纳系统,我们构建了一个游戏,其$ \ mathscr {p} $ - 位置集是其块集。 通过使用构造游戏,我们获得以下两个结果。首先,我们表征$ \ MATHCAL {D} _ {\ text {sh}} $之间的5040同构$ s(5,6,12)$,带有点集$ \ {0,1,\ ldots,11 \} $。对于每个$ s(5、6、12)$,我们的构造会产生一个游戏,其$ \ mathscr {p} $ - 位置集是其块集。从$ \ Mathcal {d} _ {\ text {sh}} $,我们获得了十六进制游戏,并且该游戏的特征是独特的游戏,在获得的5040游戏中,其位置最少。其次,我们通过使用游戏发行版来表征投影式Steiner三重系统。在这里,Steiner系统的游戏分布$ \ MATHCAL {D} $是从Steiner Systems同构到$ \ Mathcal {d} $获得的游戏中位置数量的频率分布。我们发现,可以将$ s(t,t + 1,v)$的游戏分配分解为对称组件,并且只要且仅当其游戏分配具有独特的对称组件时,steiner三重系统才投射。

The $\mathscr{P}$-position sets of some combinatorial games have special combinatorial structures. For example, the $\mathscr{P}$-position set of the hexad game, first investigated by Conway and Ryba, is the block set of the Steiner system $S(5, 6, 12)$ in the shuffle numbering, $\mathcal{D}_{\text{sh}}$. There were, however, few known games related to Steiner systems like the hexad game. For a given Steiner system, we construct a game whose $\mathscr{P}$-position set is its block set. By using constructed games, we obtain the following two results. First, we characterize $\mathcal{D}_{\text{sh}}$ among the 5040 isomorphic $S(5, 6, 12)$ with point set $\{0, 1, \ldots, 11\}$. For each $S(5, 6, 12)$, our construction produces a game whose $\mathscr{P}$-position set is its block set. From $\mathcal{D}_{\text{sh}}$, we obtain the hexad game, and this game is characterized as a unique game with the minimum number of positions among the obtained 5040 games. Second, we characterize projective Steiner triple systems by using game distributions. Here, the game distribution of a Steiner system $\mathcal{D}$ is the frequency distribution of the numbers of positions in games obtained from Steiner systems isomorphic to $\mathcal{D}$. We find that the game distribution of an $S(t, t + 1, v)$ can be decomposed into symmetric components and that a Steiner triple system is projective if and only if its game distribution has a unique symmetric component.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源