论文标题

福利指数的浓度:无阈值的摘要度量,用于量化协变量产生有效治疗规则的能力

Concentration of Benefit index: A threshold-free summary metric for quantifying the capacity of covariates to yield efficient treatment rules

论文作者

Sadatsafavi, Mohsen, Mansournia, Mohammad Ali, Gustafson, Paul

论文摘要

当提供有关治疗分配,结果和从随机试验的协变量的数据时,感兴趣的问题是可以在多大程度上使用协变量来优化治疗决策。为此目的,对协变量相互作用的协变量相互作用的统计假设检验不适合。决策理论的应用导致治疗规则,该规则比较了患者的协变量与治疗阈值的预期益处。但是,确定治疗阈值通常是特定于上下文的,当预测治疗收益的总体能力引起关注时,任何给定的阈值似乎都可能是任意的。我们提出了福利指数(CB)的浓度,这是一种无阈值指标,将协变量的综合性能量化为寻找将受益最大的人从治疗中受益最大的个人。当要治疗两个随机选择的患者之一时,提出的指数的构造是比较有没有了解协变量的预期治疗结果。我们表明,所得指数也可以根据整个治疗阈值范围内的个性化治疗决策的综合效率来表达。我们提出参数和半参数估计器,后者适合于样本外验证和乐观校正。我们使用临床试验中的数据以分步的方式演示计算,并提供了实施R代码(https://github.com/msadatsafavi/txbenefit)。所提出的索引具有直观和理论上的声音解释,可以相对轻松地估计广泛的回归模型。除了概念发展,估计的各个方面和对这种指标的推断需要在未来的研究中追求。

When data on treatment assignment, outcomes, and covariates from a randomized trial are available, a question of interest is to what extent covariates can be used to optimize treatment decisions. Statistical hypothesis testing of covariate-by-treatment interaction is ill-suited for this purpose. The application of decision theory results in treatment rules that compare the expected benefit of treatment given the patient's covariates against a treatment threshold. However, determining treatment threshold is often context-specific, and any given threshold might seem arbitrary when the overall capacity towards predicting treatment benefit is of concern. We propose the Concentration of Benefit index (Cb), a threshold-free metric that quantifies the combined performance of covariates towards finding individuals who will benefit the most from treatment. The construct of the proposed index is comparing expected treatment outcomes with and without knowledge of covariates when one of a two randomly selected patients are to be treated. We show that the resulting index can also be expressed in terms of the integrated efficiency of individualized treatment decision over the entire range of treatment thresholds. We propose parametric and semi-parametric estimators, the latter being suitable for out-of-sample validation and correction for optimism. We used data from a clinical trial to demonstrate the calculations in a step-by-step fashion, and have provided the R code for implementation (https://github.com/msadatsafavi/txBenefit). The proposed index has intuitive and theoretically sound interpretation and can be estimated with relative ease for a wide class of regression models. Beyond the conceptual developments, various aspects of estimation and inference for such a metric need to be pursued in future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源