论文标题

区分正交图

Distinguishing Orthogonality Graphs

论文作者

Boutin, Debra, Cockburn, Sally

论文摘要

如果有$ d $标签的顶点标签,则图$ g $可以是$ d $ distance,因此只有琐碎的自动形态保留标签。最小的$ d $是区分数字($ g $)。如果$ g $的每一个自动形态由$ s $唯一决定,则顶点$ s $的子集是$ g $的确定集。 $ g $的最小确定集的大小称为确定号码,det($ g $)。正交图$ω_{2K} $具有长度为$ 2K $的bitsing $,如果两个顶点之间的边缘在两个顶点之间,则在$ k $ bit上有所不同。本文表明,det($ω_{2k} $)$ = 2^{2k-1} $,如果$ \ binom {m} {2} {2} {2} \ geq 2k $,则$ 2 <$ dist($ω__{2k} $)$ \ leq m $。

A graph $G$ is said to be $d$-distinguishable if there is a labeling of the vertices with $d$ labels so that only the trivial automorphism preserves the labels. The smallest such $d$ is the distinguishing number, Dist($G$). A subset of vertices $S$ is a determining set for $G$ if every automorphism of $G$ is uniquely determined by its action on $S$. The size of a smallest determining set for $G$ is called the determining number, Det($G$). The orthogonality graph $Ω_{2k}$ has vertices which are bitstrings of length $2k$ with an edge between two vertices if they differ in precisely $k$ bits. This paper shows that Det($Ω_{2k}$) $= 2^{2k-1}$ and that if $\binom{m}{2} \geq 2k$ then $2<$ Dist($Ω_{2k}$) $\leq m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源