论文标题

梯度polyconvex材料模型及其数值处理

Gradient polyconvex material models and their numerical treatment

论文作者

Horák, Martin, Kružík, Martin

论文摘要

梯度多凸材料是非简单材料,我们不假设弹性应变的平滑度,而是需要菌株未成年人的规律性。与二年级材料相比,这允许更大的可允许变形。我们描述了梯度多凸弹性能的可能实现。此外,还给出了梯度聚合物的新几何解释,并将其与标准的二年级材料进行比较。最后,我们使用两个不同的模型(即圣景基尔chhoff材料和双重储存的能量密度)证明了所提出的方法的应用。

Gradient polyconvex materials are nonsimple materials where we do not assume smoothness of the elastic strain but instead regularity of minors of the strain is required. This allows for a larger class of admissible deformations than in the case of second-grade materials. We describe a possible implementation of gradient polyconvex elastic energies. Besides, a new geometric interpretation of gradient-polyconvexity is given and it is compared with standard second-grade materials. Finally, we demonstrate application of the proposed approach using two different models, namely, a St.-Venant Kirchhoff material and a double well stored energy density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源