论文标题
扭曲的平地
Warped Flatland
论文作者
论文摘要
我们研究了三维拓扑巨大重力的扭曲平坦几何形状。它们是全球扭曲平时的商,其异构体由二维中央扩展的庞加莱代数给出。后者可以作为扭曲的ADS3空间的一定比例限制,并具有正宇宙常数。我们使用投影图讨论了所得空间的因果结构。我们研究了他们的电荷和热力学,以及渐近杀伤向量,保留了包括它们在内的一系列边界条件。渐近对称组由扭曲的CFT代数给出,流动水平消失。在这种情况下,扭曲的CARDY公式的推导概括适用,重现了扭曲的扁平宇宙学空间的熵。
We study warped flat geometries in three-dimensional topologically massive gravity. They are quotients of global warped flat spacetime, whose isometries are given by the 2-dimensional centrally extended Poincaré algebra. The latter can be obtained as a certain scaling limit of Warped AdS3 space with a positive cosmological constant. We discuss the causal structure of the resulting spacetimes using projection diagrams. We study their charges and thermodynamics, together with asymptotic Killing vectors preserving a consistent set of boundary conditions including them. The asymptotic symmetry group is given by a Warped CFT algebra, with a vanishing current level. A generalization of the derivation of the Warped Cardy formula applies in this case, reproducing the entropy of the warped flat cosmological spacetimes.